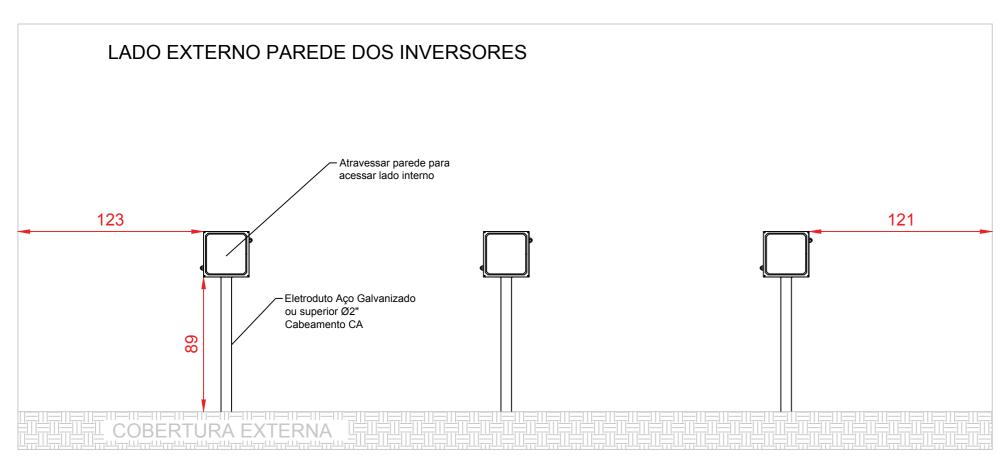
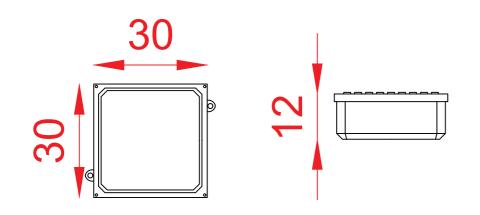
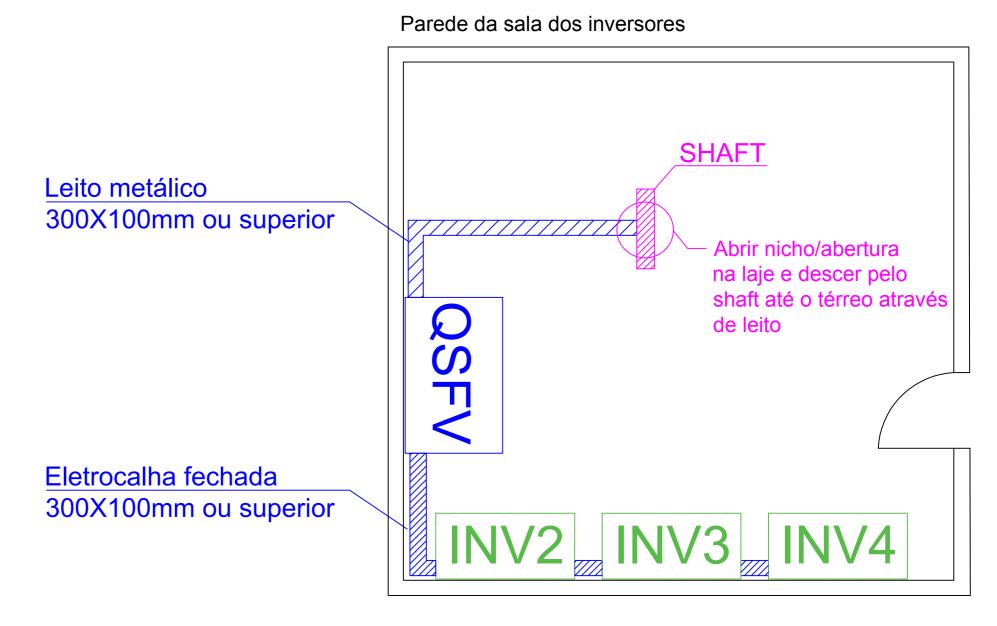

A2-(597x420)mm



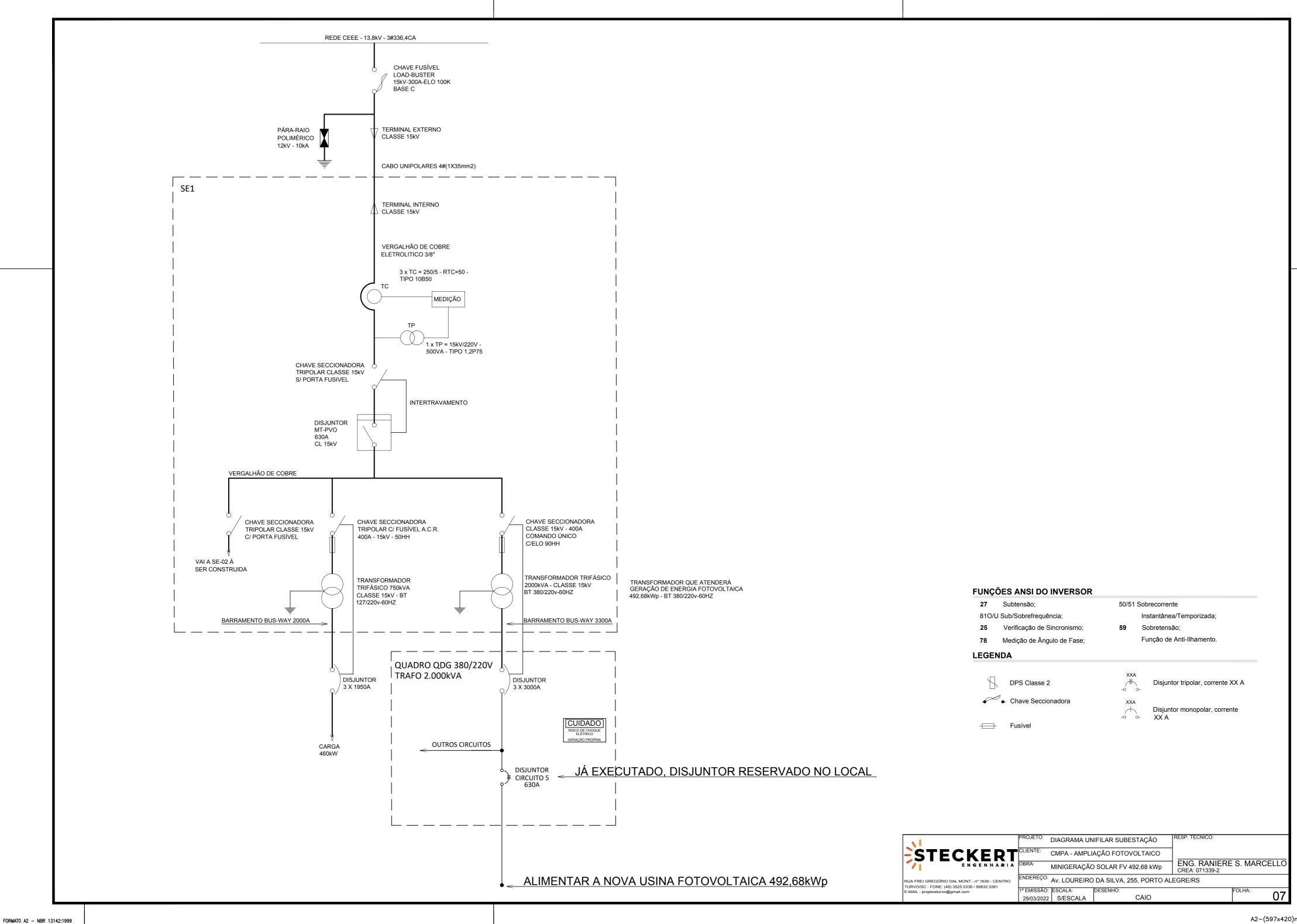
A2-(597x420)mm



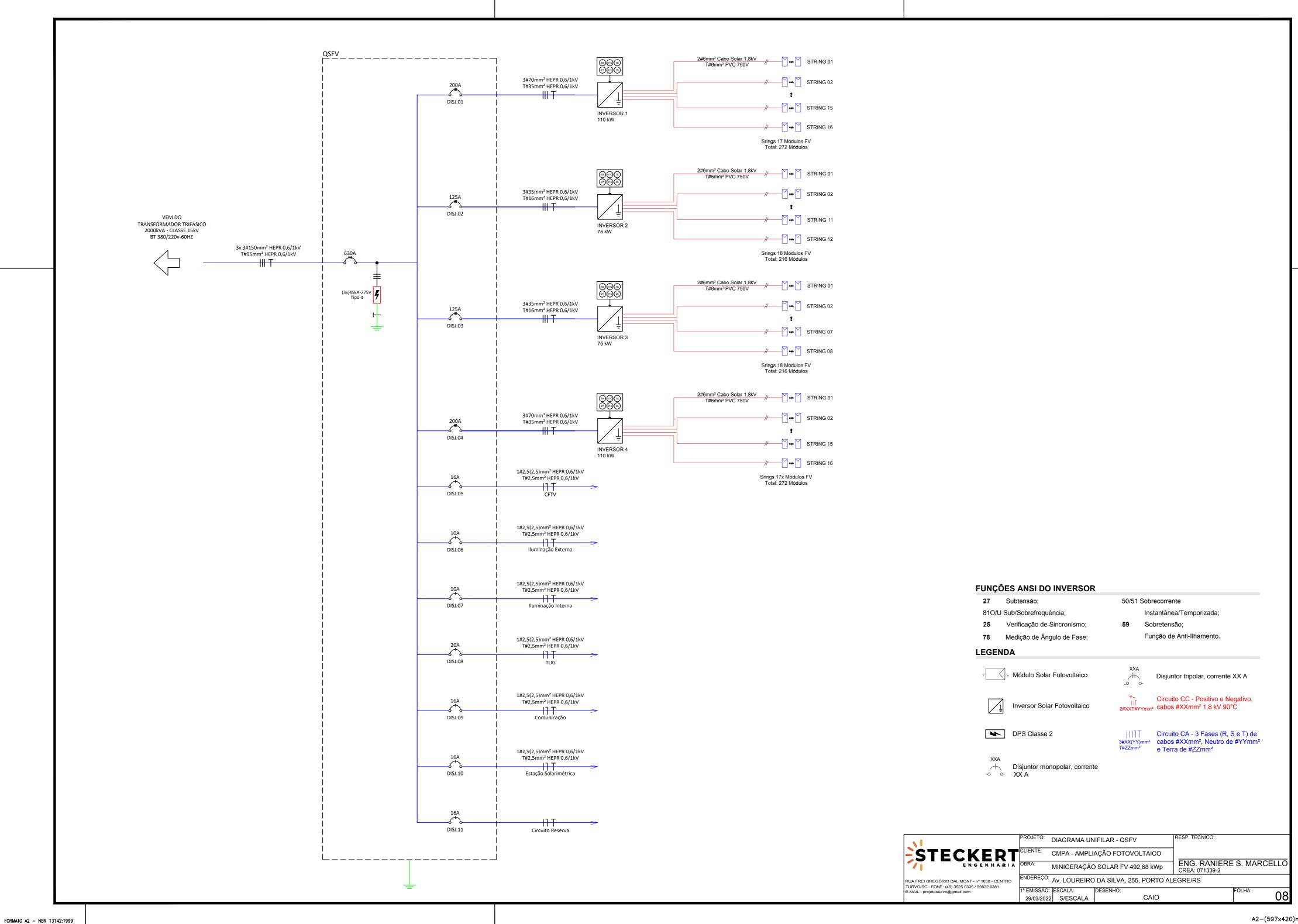

DETALHE INTERNO DA FIXAÇÃO INVERSORES E CABEAMENTO CA E CC ESC:1/25

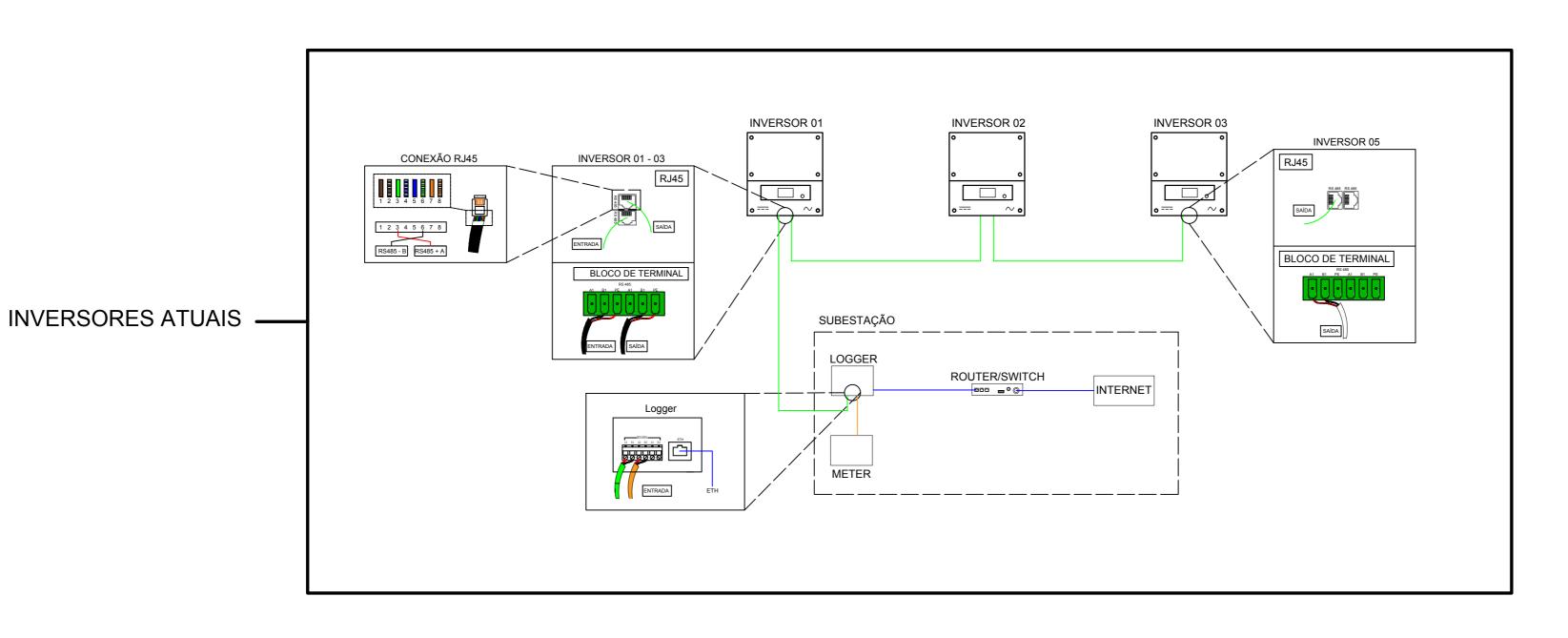
DETALHE EXTERNO DA FIXAÇÃO INVERSORES E CABEAMENTO CC ESC:1/25

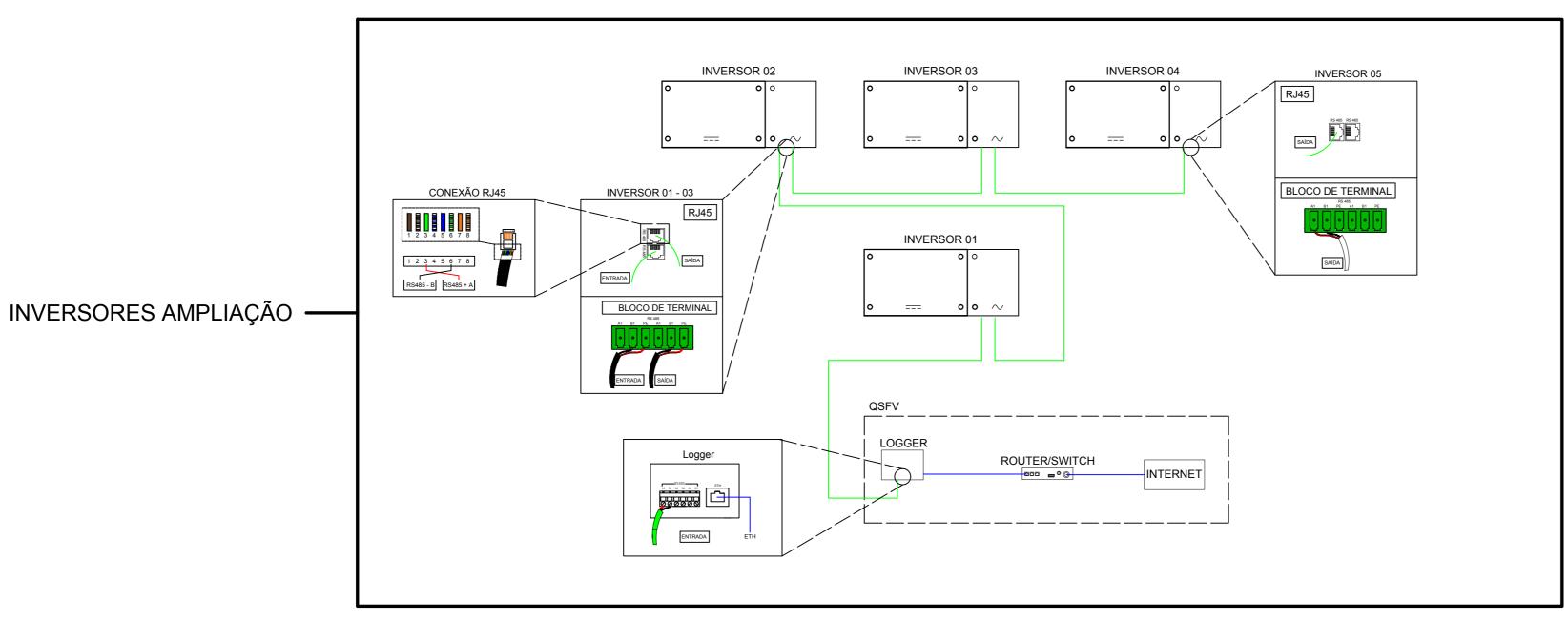
3 DETALHE CAIXA DE PASSAGEM METÁLICA 30X30CM ESC:1/10



Planta baixa elétrica sala dos inversores


ESC:1/50

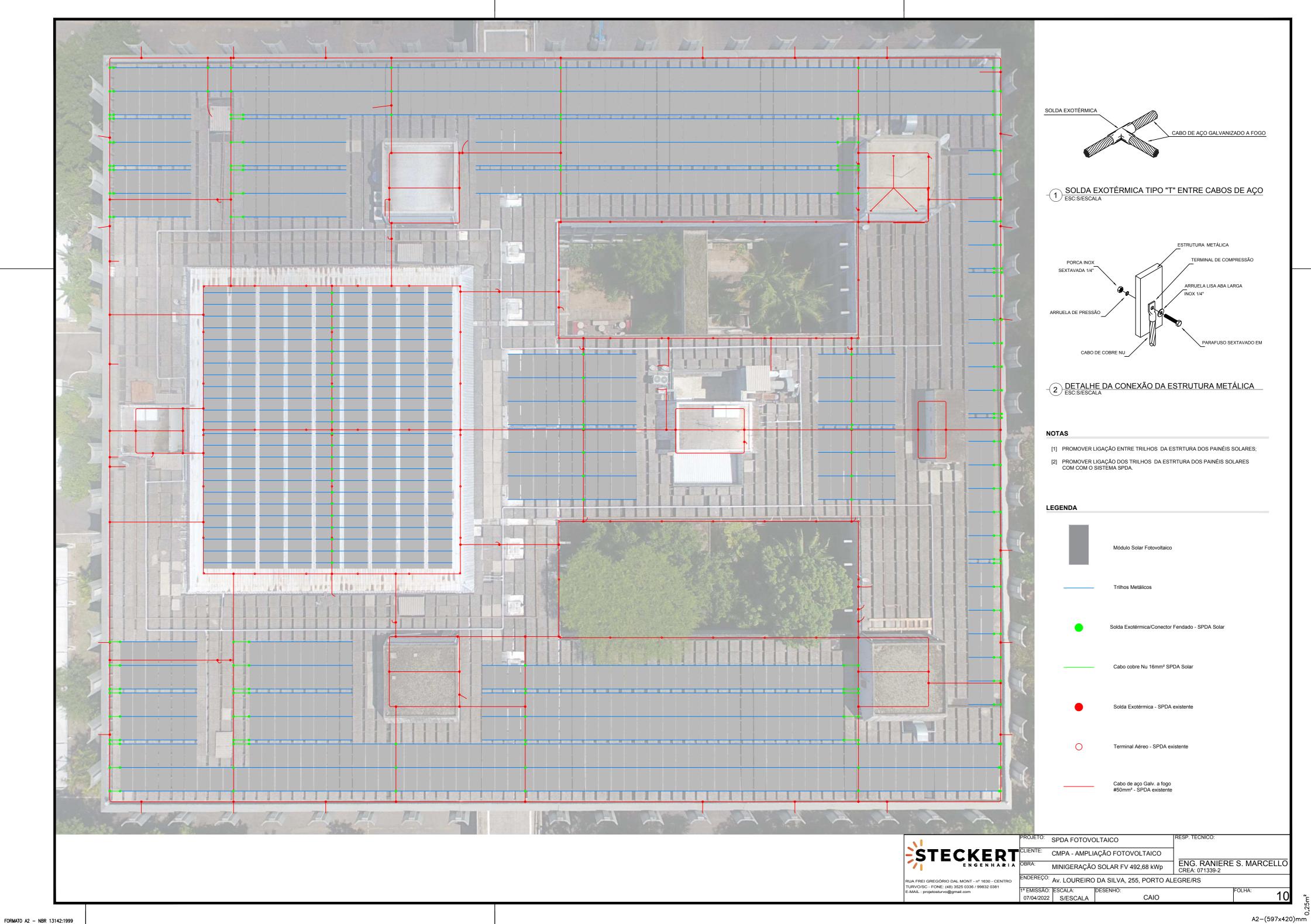

FORMATO A2 - NBR 13142:1999



A2-(597x420)mm

A2-(597x420)mm

NOTAS
[1] A ESQUEMATIZAÇÃO DE LIGAÇÃO DE CABO RS485 SÃO AS MESMAS PARA O INVERSOR 01 AO INVERSOR 04
[2] CABOS DE CONTATO SECO DE SECÇÃO TRANSVERSAL DE 1mm2 A 1,5mm2
[3] CABO RS485 22 AWG BLINDADO COM COLETOR DRENO PARA CADEIA DE INVERSORES, UTILIZA O MÉTODO DE INSTALAÇÃO DAISY-CHAIN PARA REDE MODBUS RTU;
[4] ENCAMINHAMENTO DO CABO DE COMUNICAÇÃO ATRAVÉS DO MÉTODO DE INSTALAÇÃO D - ELETRODUTO PEAD 2" ENTERRADO;
[5] O APARELHO SUNGROW LOGGER SERÁ INSTALADO NO QUADRO DE GERAÇÃO, SEGUINDO INSTRUÇÕES DO MANUAL DE INSTALAÇÃO;
[6] O SHIELD DO CABO DE COMUNICAÇÃO RS485 DEVERÁ SER ATERRADO;
LEGENDA


Inversor solar fotovoltaico

Inversor solar fotovoltaico

FORMATO A2 - NBR 13142:1999

Cabo RS485. Inversores

Cabo CAT6. Ethernet

BASE DE CÁLCULO

PROJETO: Ampliação UFV - CMPA - cópia 2

OPERADOR: Raniere Steckert Marcello

DATA: 01/04/2022

DADOS DO PROJETO (TELHADO 1 - PLENÁRIA METÁLICO)

INFORMAÇÕES GERAIS

Nome Ampliação UFV - CMPA - cópia 2

Sistema de montagem SingleRail

Cliente Câmara de Vereadores

de Porto Alegre - RS

Contato Hélio Maltz

Operador Raniere Steckert

Marcello

OBSERVAÇÕES

Verificar detalhes telhado Verifica ângulo telhado Verificar dimensoes

LOCAL

Endereço Porto Alegre, RS, Brazil

Altitude 10,40 m

Tipo de telhado Telhado duas águas Método de fixação Cobertura do telhado

Cobertura Junção entre telhas (costura)

Altura da edificação 9.00 m 5° Inclinação do telhado

Distância mínima da borda 0,20 m

Telha zipada dupla Material Tipo de telha zipada Aço

Distância de fixação da

telha zipada

500,0 mm

Espessura da telha zipada 10,0 mm Espessura da chapa 0,500 mm

Altura do fecho da telha

zipada

15,0 mm

CARGAS

Metodologia de design **ABNT**

MÓDULOS

Fabricante JinkoSolar Holding Co. Quantidade 216

Ltd.

Nome JKM-545M-72HL4-V Potência 117,720 kWp

Tiger Pro 72HC

Dimensões CxLxA 2274 x 1134 x 35,00 mm

Peso 28,9 kg

Potência 545 W

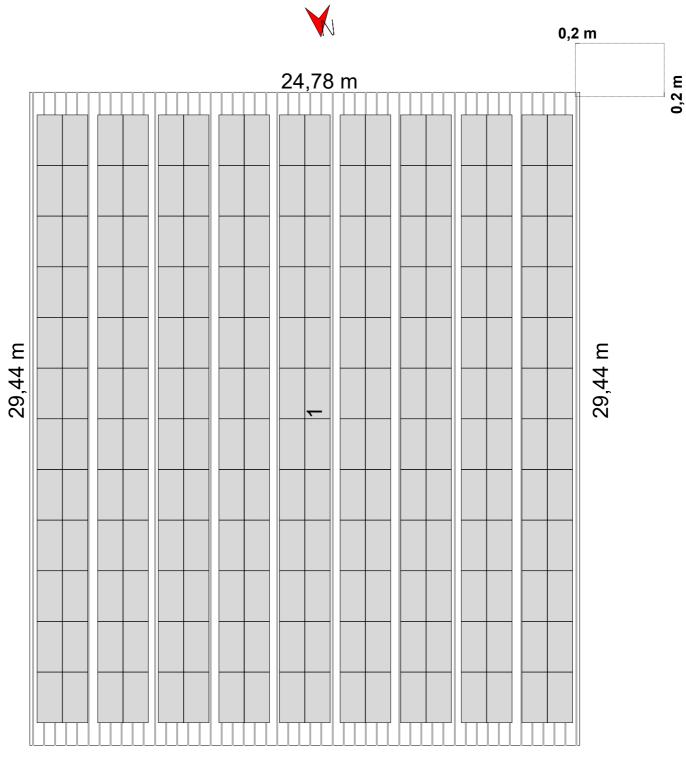
PLANO DE MONTAGEM (TELHADO 1 - PLENÁRIA METÁLICO)

	trilhos inteiro	os		Corte	
Tipo	compriment o total do / m	Quantid ade 4,40 m	do trilho / m	Compri mento / m	Repouso / m
Α	2,361		4,400	2,361	2,029
В	5,092	1	2,029	1,000	1,019
С	5,092	1	1,019	1,000	0,009
D	5,092	1	4,400	1,000	3,390
Е	5,092	1	3,390	1,000	2,380
F	5,092	1	2,380	1,000	1,370
G	5,092	1	1,370	1,000	0,360

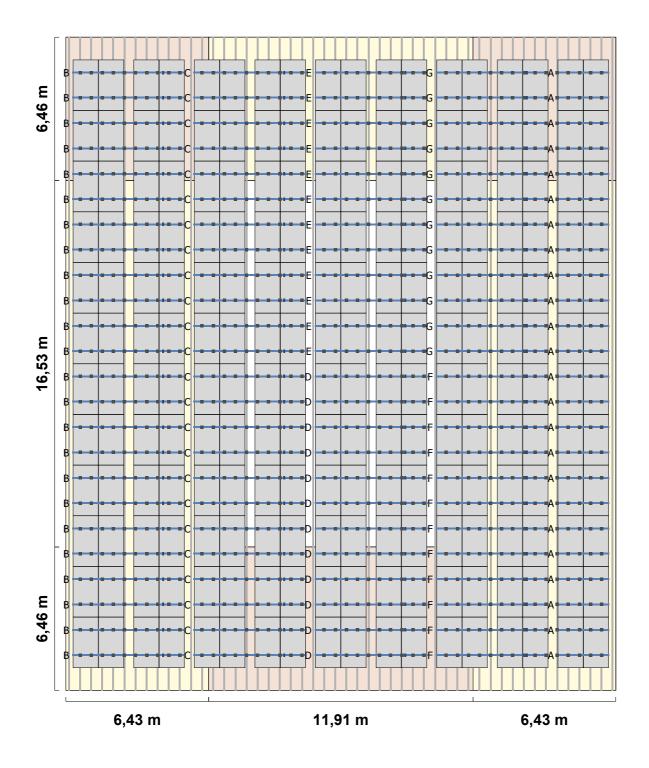
LEGENDA

Distância até a margem do telhado [m] 0,33

fixador Trilhos base


DISTÂNCIA ENTRE FIXADORES

Campo de	área	Distância
1	Área de campo	0,50 m
1	Beiral do telhado	0,50 m
1	Área de extremidade (beiral)	0,50 m
1	Cumeeira	0,50 m
1	Área de extremidade (beiral)	0,50 m


CAMPOS DO MÓDULO

Campo de módulos	Largura [m]	Comprimento [m]	Largura dos módulos	Comprimento em módulos
1	24,13	27,40	18	12

INSTRUÇÕES DE MONTAGEM - RESUMO (TELHADO 1 - PLENÁRIA METÁLICO)

RESULTADOS (TELHADO 1 - PLENÁRIA METÁLICO)

COMPONENTES

Fixador Single Standing SeamClamp CF:x

Trilho base K2 SingleRail 36

CARGAS SOBRE OS MÓDULOS

	Aná	lise de seguran	ça estrutural [F	Pa]	Verificação de solicitações [Pa]			
área	Pressão Perpendicular	Pressão Paralelo	Sucção Perpendicular	Sucção Paralelo	Pressão Perpendicular	Pressão Paralelo	Sucção Perpendicular	Sucção Paralelo
Área de campo	161,2	14,1	-763,3	10,1	115,2	10,1	-512,3	10,1
Beiral do telhado	161,2	14,1	-1251,4	10,1	115,2	10,1	-860,9	10,1
Área de extremidade (beiral)	161,2	14,1	-1056,1	10,1	115,2	10,1	-721,5	10,1
Cumeeira	161,2	14,1	-860,9	10,1	115,2	10,1	-582,0	10,1

RESULTADO UTILIZAÇÃO

		Capacidade	apacidade de carga Adeq		Distâ	Valores máximos	
N°	Área do telhado	Pr	Pr C	Pr	Fst	RB	Pr C
Campo de		σ [%]	σ [%]	f [%]			Lmáx[m]
1	Área de campo	5,6	24,7	1,8	0,500		0,500
1	Beiral do telhado	9,2	28,3	3,0	0,500		0,500
1	Área de extremidade (beiral)	7,8	34,1	2,5	0,500		0,500
1	Cumeeira	6,3	27,8	2,0	0,500		0,500
1	1 Área de extremidade (beiral)		28,3	3,0	0,500		0,500

Pr Perfil Fixador Fst σ Tensão f Deflexão Força

comprimento máximo do balanço CL/Lmax [m] Fst Dmax [m] Distância máxima entre fixadores

RB trilho base RS Rail superior

Adeq Combinação de ações

Pr C Balanço

NOTAS

- Os fixadores de costura não devem ser posicionados nos clipes de fixação da cobertura do telhado.
- As instruções de montagem da telha zipada utilizada devem ser consideradas.
- No planeamento no Base apenas os trilhos são verificados quanto a capacidade de carga. Não é feita qualquer verificação estática dos grampos existentes. No relatório estático são determinadas as cargas aplicadas no edifico; Os efeitos sobre o edifício podem ser determinados por um engenheiro de construção/civil.
- Em relação às condições do local, os dados e os resultados têm de ser verificados por uma pessoa adequadamente qualificada. Por favor, considere https://k2-systems.com/pt/base-cgu em particular o parágrafo 2 ("Condições técnicas e gerais no cliente"), o parágrafo 7 ("Limitação da garantia") e o parágrafo 8 ("Limitação de responsabilidade"), que podem ser consultados nas nossas Condições gerais de utilização.

Não existe kit para o fixador selecionado.

Não existe kit para o trilho selecionado.

RELATÓRIO DE ANÁLISE ESTRUTURAL (TELHADO 1 - PLENÁRIA METÁLICO)

INFORMAÇÕES GERAIS

Nome Ampliação UFV - CMPA - cópia 2

Sistema de montagem SingleRail

Cliente Câmara de Vereadores

de Porto Alegre - RS

Contato Hélio Maltz

Operador Raniere Steckert

Marcello

LOCAL

Endereço Porto Alegre, RS, Brazil

Altitude 10,40 m

Tipo de telhado Telhado duas águas

Método de fixação Cobertura do telhado

Cobertura Junção entre telhas (costura)

Altura da edificação 9,00 m Inclinação do telhado 5 °

Distância mínima da borda 0,20 m

Tipo de telha zipada Telha zipada dupla Material Aço

Distância de fixação da telh 500,0 mm

a zipada

Espessura da telha zipada 10,0 mm Espessura da chapa 0,500 mm

Altura do fecho da telha zi 15,0 mm

pada

CARGAS

Metodologia de design ABNT

CARGA DE VENTO

Pressão de rajada $q_p = 0,697 \text{ kN/m}^2$

ÁREA DO TELHADO

área	maxCpe	minCpe	essão do vento [kN/r	cção do vento [kN/n
Área de campo	0,000	-0,900	0,000	-0,627
Beiral do telhado	0,000	-1,400	0,000	-0,976
Área de extremidade (beiral)	0,000	-1,200	0,000	-0,837
Cumeeir	0,000	-1,000	0,000	-0,697

CARGA PERMANENTE

 $= 11,21 \text{ kg/m}^2$ $G_{M} = 28,9 \text{ kg}$ Peso dos módulos Peso próprio do

módulo

= 1,5 kg $= 0.58 \text{ kg/m}^2$ Peso do sistema de Peso próprio do

montagem

 $A_{\rm M} = 2,58 \, {\rm m}^2$ $= 0.12 \text{ kN/m}^2$ Área do módulo Carga própria total

(excluindo lastro)

sistema de montagem

COMBINAÇÃO DE AÇÕES

CAPACIDADE DE CARGA

1,40 Coeficiente de ponderação para as ações $\gamma_{G,sup}$

permanentes de efeito desfavorável

1,00 Coeficiente de ponderação para as ações $\gamma_{G,inf}$

permanentes de efeito favorável

1,40 Coeficiente de ponderação para a ação variável γο

principal

Combinação de caso de carga 00: $E_d = \gamma_{G,sup} * G_k + \gamma_Q * W_{k,Pressão}$

Combinação de caso de carga 02: $E_d = \gamma_{G,inf} * G_k + \gamma_O * W_{k,Succão}$

COMBINAÇÃO DE AÇÕES

Combinação de caso de carga 00:

Combinação de caso de carga 01: $E_d = G_k * W_{k,Pressão}$

Combinação de caso de carga 02: $E_d = G_k * W_{k,Succão}$

IMPACTO MÁXIMO

	Anális	e de segurança	a estrutural [kN	/m²]	Verificação de solicitações [kN/m²]			
área	Pressão Perpendicular	Pressão Paralelo	Sucção Perpendicular	Sucção Paralelo	Pressão Perpendicular	Pressão Paralelo	Sucção Perpendicular	Sucção Paralelo
Área de campo	0,161	0,014	-0,763	0,010	0,115	0,010	-0,512	0,010
Beiral do telhado	0,161	0,014	-1,251	0,010	0,115	0,010	-0,861	0,010
Área de extremidade (beiral)	0,161	0,014	-1,056	0,010	0,115	0,010	-0,721	0,010
Cumeeira	0,161	0,014	-0,861	0,010	0,115	0,010	-0,582	0,010

AÇÕES MÁXIMAS POR FIXADOR

	Anál	lise de seguran	ça estrutural [k	N]	Verificação de solicitações [kN]			
área	Pressão Perpendicular	Pressão Paralelo	Sucção Perpendicular	Sucção Paralelo	Pressão Perpendicular	Pressão Paralelo	Sucção Perpendicular	Sucção Paralelo
Área de campo	0,101	0,009	-0,477	0,006	0,072	0,006	-0,320	0,006
Beiral do telhado	0,101	0,009	-0,783	0,006	0,072	0,006	-0,538	0,006
Área de extremidade (beiral)	0,101	0,009	-0,783	0,006	0,072	0,006	-0,538	0,006
Cumeeira	0,101	0,009	-0,538	0,006	0,072	0,006	-0,364	0,006

VALORES DE RESISTÊNCIA DOS COMPONENTES

TRILHO BASE

N°	Trilho base	А	l _y	l _z	W _y	Wz
mpo de módul		[cm²]	[cm^4]	[cm^4]	[cm³]	[cm³]
1	K2 SingleRail 36	2,850	4,02	6,37	2,14	3,09

RESULTADO UTILIZAÇÃO

		Capacidade de carga		Adeq	Distâ		
Campo de	Área do telhado	Pr	Pr C	Pr	Fst	RB	Pr C
módulos		σ [%]	σ [%]	f [%]			Lmáx[m]
1	Área de campo	5,6	24,7	1,8	0,500		0,500
1	Beiral do telhado	9,2	28,3	3,0	0,500		0,500
1	1 Årea de extremidade (beira		34,1	2,5	0,500		0,500
1	Cumeeira	6,3	27,8	2,0	0,500		0,500
1	rea de extremidade (beiral)	9,2	28,3	3,0	0,500		0,500

 $\begin{array}{ccc} \text{Pr} & & \text{Perfil} \\ \text{Fst} & & \text{Fixador} \\ \sigma & & \text{Tensão} \\ \text{f} & & \text{Deflexão} \\ \text{F} & & \text{Força} \end{array}$

CL/Lmax [m] comprimento máximo do balanço Fst Dmax [m] Distância máxima entre fixadores

RB trilho base RS Rail superior

Adeq Combinação de ações

Pr C Balanço

O SISTEMA FOI VERIFICADO COM SUCESSO.

LISTA DE MATERIAIS (TELHADO 1 - PLENÁRIA METÁLICO)

Posição	Nº do artigo	Artigo	Quantidade	Peso
1	2003024	Single Standing SeamClamp CF:x	1080	156,6 kg
2	1003586	MiddleClamp XS Set 34-38	312	21,8 kg
3	1005169	EndClamp Set 34-36	240	18,0 kg
4	2002870	K2 Solar Cable Manager	216	0,6 kg
5	2003222	SingleRail 36; 4.40 m	132	447,5 kg
6	2001976	SingleRail 36 RailConnector Set	96	36,1 kg
Total				680,6 kg

Raniere Steckert Marcello | 01/04/202

DADOS DO PROJETO (TELHADO 2 - ALA SUL)

INFORMAÇÕES GERAIS

Nome Ampliação UFV - CMPA - cópia 2

Sistema de montagem D-Dome 6.10 Xpress com balastro e âncoras fixas

Cliente Câmara de Vereadores

de Porto Alegre - RS

Contato Hélio Maltz

Operador Raniere Steckert

Marcello

OBSERVAÇÕES

LOCAL

Porto Alegre, RS, Brazil Endereço

Altitude 10,40 m

Tipo de telhado Telhado plano

Método de fixação com balastro e âncoras fixas

Cobertura Plano Altura da edificação 8,00 m Altura do parapeito 0,15 m 0° Inclinação do telhado Distância mínima da borda 0,60 m Material Betume

Coeficiente de atrito 1,00

O coeficiente de atrito indicado aqui deve ser verificado no local. Caso seja auferido um valor menor, este deverá ser indicado para o cálculo de lastro.

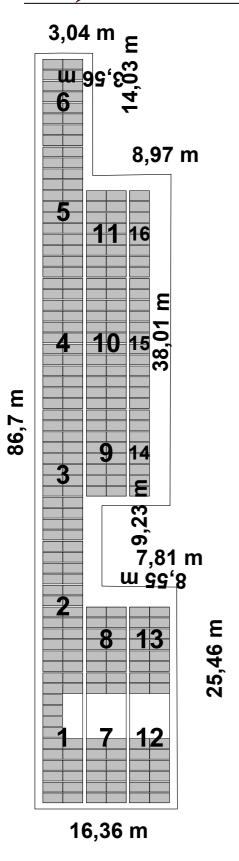
CARGAS

Metodologia de design **ABNT**

MÓDULOS

Fabricante JinkoSolar Holding Co. Quantidade 272

Ltd.


JKM-545M-72HL4-V Nome Potência 148,240 kWp

Tiger Pro 72HC

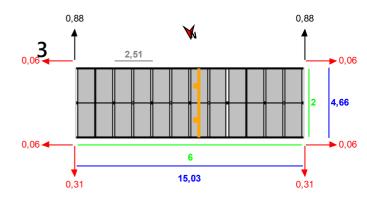
Dimensões CxLxA 2274 x 1134 x 35,00 mm

Peso 28,9 kg Potência 545 W

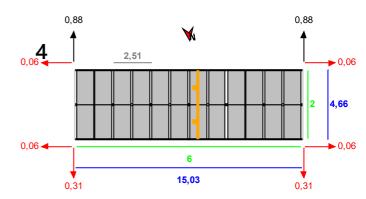
PLANO MONTAGEM (TELHADO 2 - ALA SUL)

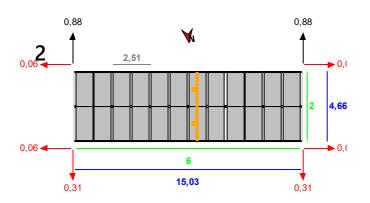
Medidas em [m]

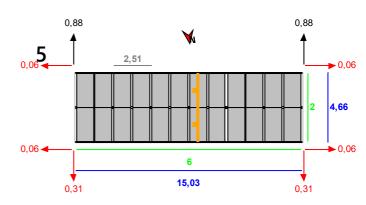
LEGENDA

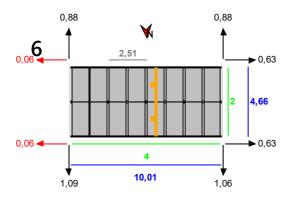

Distância até o campo de módulos mais próximo [m]

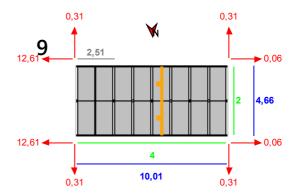
Distância até a margem do telhado [m]

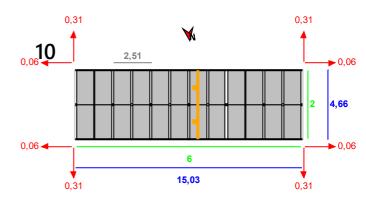

Quantidade de módulos

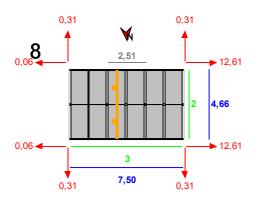

Comprimento/largura do campo de módulos [m]

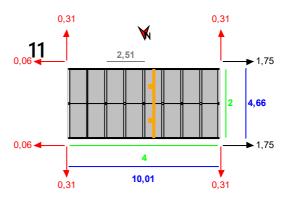

Distância das fileiras [m]

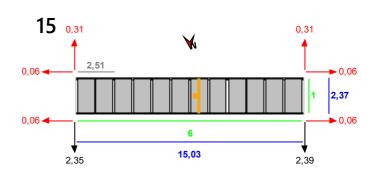


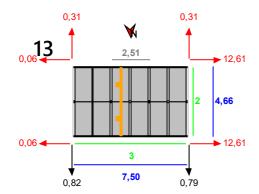


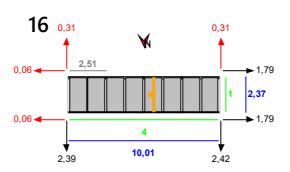


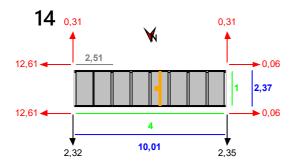


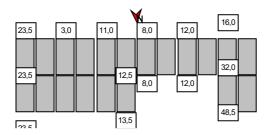


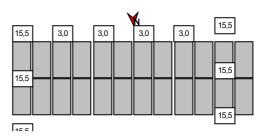




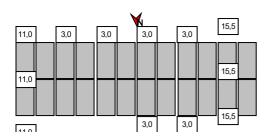


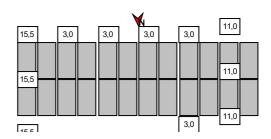


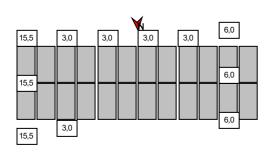


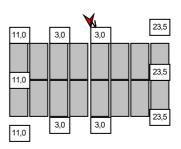


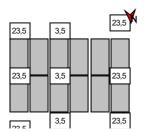
PLANO DE APLICAÇÃO DE LASTRO (TELHADO 2 - ALA SUL)


1

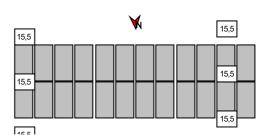

4


2

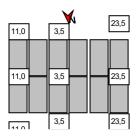

5


3

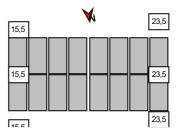
6

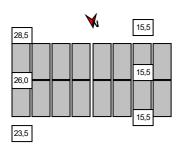


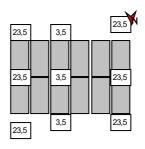
7

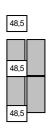


48,5

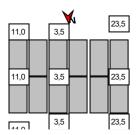

10


8

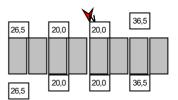

11

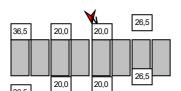


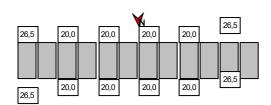
9



12




13


16

14

15

RESULTADOS (TELHADO 2 - ALA SUL)

VALORES DE RESISTÊNCIA DAS ÂNCORAS

Escora User defined anchor

Capacidade de 2,43 kN

cisalhamento

Capacidade de carga de 1,63 kN

tracção

VERIFICAÇÃO DAS CARGAS DO SISTEMA

Verificação das cargas do sistema [%]	Pressão	38,92
	Sucção	92,60
Cargas sobre os módulos (Análise de	Pressão	1229
segurança estrutural) [Pa]	Sucção	-974
Cargas sobre os módulos (Verificação de	Pressão	830
solicitações) [Pa]	Sucção	-613

CARGAS ESPECÍFICAS

Índice (Bloco de	Número de suportes (Bloco de módulos)	 (B	Lastro [kg] oco de módul		o∯arga permanente [kN/m²] (Bloco de módulos	[kN/m²]	:ePróprio peso [kN/m²]
campo de módulos 1	10	 	247,0	893,0	0,16		
campo de módulos 2	12	 	97,5	872,7	0,13		
campo de módulos 3	12	 	79,5	854,7	0,12		
campo de módulos 4	12	 	105,0	880,2	0,13		
campo de módulos 5	12	 	94,5	869,7	0,12		
campo de módulos 6	8	 	115,5	632,3	0,14		
campo de módulos 7	8	 	297,0	813,8	0,18		
campo de módulos 8	6	 	114,0	501,6	0,15		
campo de módulos 9	8	 	124,5	641,3	0,14		
campo de módulos 10	12	 	93,0	868,2	0,12		
campo de módulos 11	8	 	117,0	633,8	0,14		
campo de módulos 12	8	 	297,0	813,8	0,18		
campo de módulos 13	6	 	114,0	501,6	0,15		
campo de módulos 14	4	 	206,0	464,4	0,20		
campo de módulos 15	6	 	266,0	653,6	0,19		
campo de módulos 16	4	 	206,0	464,4	0,20		
Todos os blocos	136	 	2573,5	11359,1		0,10	

NOTAS

- A prova da segurança da posição e da capacidade de carga do sistema é realizada verificando os casos de carga que são levantados e deslocados pelo vento e por cálculos estáticos adicionais. Você encontrará uma versão curta do relatório do túnel de vento e um certificado para os cálculos estáticos adicionais em nossa página inicial.
- Em relação às condições do local, os dados e os resultados têm de ser verificados por uma pessoa adequadamente qualificada. Por favor, considere https://k2-systems.com/pt/base-cgu em particular o parágrafo 2 ("Condições técnicas e gerais no cliente"), o parágrafo 7 ("Limitação da garantia") e o parágrafo 8 ("Limitação de responsabilidade"), que podem ser consultados nas nossas Condições gerais de utilização.

🔥 As âncoras não fazem parte dos produtos K2 e devem ser adquiridas separadamente do respectivo fabricante.

RELATÓRIO DE ANÁLISE ESTRUTURAL (TELHADO 2 - ALA SUL)

INFORMAÇÕES GERAIS

Nome Ampliação UFV - CMPA - cópia 2

Sistema de montagem D-Dome 6.10 Xpress com balastro e âncoras fixas

Cliente Câmara de Vereadores

de Porto Alegre - RS

Contato Hélio Maltz

Operador Raniere Steckert

Marcello

LOCAL

Endereço Porto Alegre, RS, Brazil

Altitude 10,40 m

Tipo de telhado Telhado plano

Método de fixação com balastro e âncoras fixas

Cobertura Plano
Altura da edificação 8,00 m
Altura do parapeito 0,15 m
Inclinação do telhado 0 °
Distância mínima da borda 0,60 m
Material Betume
Coeficiente de atrito 1.00

CARGAS

Metodologia de design ABNT

Pressão de rajada $q_n = 0.697 \text{ kN/m}^2$

CARGA PERMANENTE

Peso dos módulos $G_M = 28,9 \text{ kg}$ Peso próprio do $= 11,21 \text{ kg/m}^2$

módulo

Peso do sistema de = 3.4 kg Peso próprio do $= 0.66 \text{ kg/m}^2$

montagem sistema de montagem

Área do módulo $A_{M} = 2,58 \text{ m}^2$ Carga própria total $= 0,12 \text{ kN/m}^2$

(excluindo lastro)

COMBINAÇÃO DE AÇÕES

CAPACIDADE DE CARGA

Coeficiente de ponderação para as ações $$\gamma_{\text{G,sup}}$$ 1,40

permanentes de efeito desfavorável

Coeficiente de ponderação para as ações $\gamma_{G,inf}$ 1,00

permanentes de efeito favorável

Coeficiente de ponderação para a ação variável γ_Q 1,40

principal

Combinação de caso de carga 00:

Combinação de caso de carga 02:

Combinação de caso de carga 03:

Combinação de caso de carga 04:

Combinação de caso de carga 05:

Combinação de caso de carga 06:

Combinação de caso de carga 07:

Combinação de caso de carga 08:

Combinação de caso de carga 09:

Verificação de elevação:

Verificação de deslocamento:

COMBINAÇÃO DE AÇÕES

Combinação de caso de carga 00:

Combinação de caso de carga 01: $E_d = G_k * W_{k, Pressão}$

Combinação de caso de carga 02: $E_d = G_k * W_{k,Sucção}$

O SISTEMA FOI VERIFICADO COM SUCESSO.

PRESSÃO MÁXIMA NO ISOLAMENTO

INFORMAÇÕES GERAIS

Diagrama de cargas permanentes $g_{Sistema} = 0,12 \text{ kN/m}^2$

coeficiente aerodinâmico $c_{p,Press\~ao} = 0,2$

DISTRIBUIÇÃO DE CARGA NO TAPETE DE PROTEÇÃO DO EDIFÍCIO ABAIXO DE 0,45 °

Dimensões 75,3 * 380,0 * 23,1 mm

 $A_{\text{eff}} = 28614 \text{ mm}^2$

 $A_{Extens\~ao\ das\ cargas} = 2,58\ m^2$

máx. lastro $G_{Lastro} = 32,0 \text{ kg}$

DISTRIBUIÇÃO DE CARGA NO TAPETE DE PROTEÇÃO SOB O SISTEMA SD, 45°

Dimensões 75,3 * 380,0 * 23,1 mm

 $A_{eff} = 28614 \text{ mm}^2$

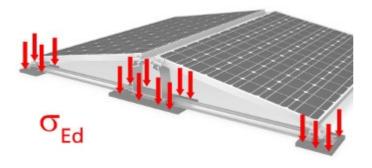
 $A_{Extens\~ao\ das\ cargas} = 1,29\ m^2$

máx. lastro $G_{Lastro} = 8.2 \text{ kg}$

COMBINAÇÃO DE AÇÕES

área	,		Combinação de caso de carga 0 2	Combinação de caso de carga 0 3	Combinação de caso de carga 0 4	,
σEk,Isolamento térmico,D6_10 [Pa]		34607				
σ _{Ek,Isolamento térmico,SD} [Pa]		14644				

EFEITOS DE CARGAS MORTAS (SISTEMA FOTOVOLTAICO + LASTRO)


 $\sigma_{Ek,Isolamento\ térmico,D6_10}$ $\sigma_{Ek} = --- Pa$

 $\sigma_{Ek,Isolamento\ térmico,SD}$ $\sigma_{Ek} = --- Pa$

AÇÕES MÁXIMAS (SOMA DAS CARGAS MORTAS E AS AÇÕES VARIÁVEIS MÁXIMAS DE VENTO E NEVE)

 $\sigma_{Ek,lsolamento\ térmico,D6_10}$ max $\sigma_{Ek}=34607\ Pa$

 $\sigma_{Ek,Isolamento\ térmico,SD}$ max $\sigma_{Ek}=14644\ Pa$

CARGAS DE VENTO PROVENIENTE DOS PAINÉIS FOTOVOTLAICOS PARA A ESTRUTURA

De acordo com os testes de túnel de vento realizados por I.F.I. Institut für Industrieaerodynamik G mbH

INFORMAÇÕES GERAIS

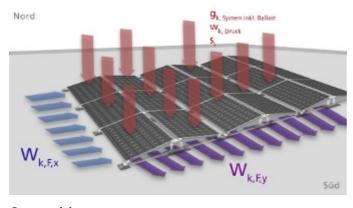
Número de módulos na área central0Número dos módulos na área da margem272Número total de módulos272

Áreas de telhado cobertas com módulos $A = aprox. 782,40 \text{ m}^2$

Carga permanente $g_{k,Sistema\ incl.\ lastro} = 0,14\ kN/m^2$

COEFICIENTES AERODINÂMICOS

 $\begin{array}{lll} C_{p,\,Pressão} & segundo \, EN \, 04\text{-}01\text{-}1991 \\ C_{F,x,em \, média} & -0,06 \\ \\ C_{F,y,em \, média} & 0,01 \\ Correção \, da \, distância \, da \, margem & k_{Slxy} = 1 \\ Coeficiente \, de \, correção \, do \, parapeito & k_p = 1,02 \\ \end{array}$


TENSÃO HORIZONTAL

 $W_{k,F,x} = 0.014 \text{ kN/m}^2$ $W_{k,F,y} = 0.007 \text{ kN/m}^2$

TENSÃO VERTICAL

 $g_{k,Sistema\ incl.\ lastro} = 0,14\ kN/m^2$ $W_{k,Pressão}$ - segundo EN 04-01-1991

s_i - segundo EN 1991-1-3

Comentários:

As cargas de vento em telhados planos são determinadas pelo seu efeito de deslocamento, e permanecem inalteradas mesmo considerando uma estrutura de painéis plana. Recomendamos a utilização dos coeficientes aerodinâmicos de acordo com a norma DIN EN 1991-1-4 para o cálculo de telhados planos.

LISTA DE MATERIAIS (TELHADO 2 - ALA SUL)

Posição	Nº do artigo	Artigo	Quantidade	Peso
1	2004095	D-Dome 6.10 Base Set L	212	641,1 kg
2	2004125	Dome 6.10 Peak	424	127,2 kg
3	2004123	Dome 6.10 Connector Bonding Set	160	34,6 kg
4	2002870	K2 Solar Cable Manager	272	0,8 kg
5	xxxxxxx	User defined anchor	33	-
6	2004144	FixPro L	33	132,0 kg
7	2002547	Adapter Plate M12	33	9,9 kg
8	2003147	Climber 36/50 M12	33	2,1 kg
9	2002558	MiniClamp MC Set 30-50	240	13,9 kg
10	2002559	MiniClamp EC Set 30-50	608	40,1 kg
Total				1001,7 kg

As âncoras não fazem parte dos produtos K2 e devem ser adquiridas separadamente do respectivo fabricante.

DADOS DO PROJETO (TELHADO 4 - ALA ESQUERDA E CENTRAL)

INFORMAÇÕES GERAIS

Nome Ampliação UFV - CMPA - cópia 2

Sistema de montagem D-Dome 6.10 Xpress com balastro e âncoras fixas

Cliente Câmara de Vereadores

de Porto Alegre - RS

Contato Hélio Maltz

Operador Raniere Steckert

Marcello

LOCAL

Endereço Porto Alegre, RS, Brazil

Altitude 10,40 m

Tipo de telhado Telhado plano

com balastro e âncoras fixas Método de fixação

Cobertura Plano Altura da edificação 8,00 m Altura do parapeito 0.15 m Inclinação do telhado 0° Distância mínima da borda 0,60 m

Material Betume Coeficiente de atrito 1.00

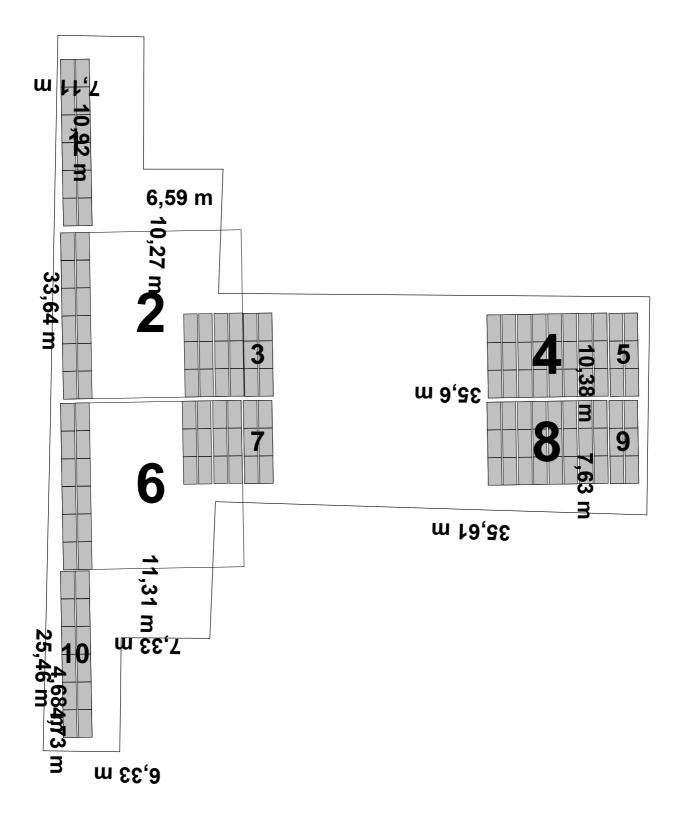
O coeficiente de atrito indicado aqui deve ser verificado no local. Caso seja auferido um valor menor, este deverá ser indicado para o cálculo de lastro.

CARGAS

Metodologia de design **ABNT**

MÓDULOS

Fabricante JinkoSolar Holding Co. Quantidade 144


Ltd.

Nome JKM-545M-72HL4-V Potência 78,480 kWp

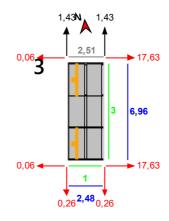
Tiger Pro 72HC

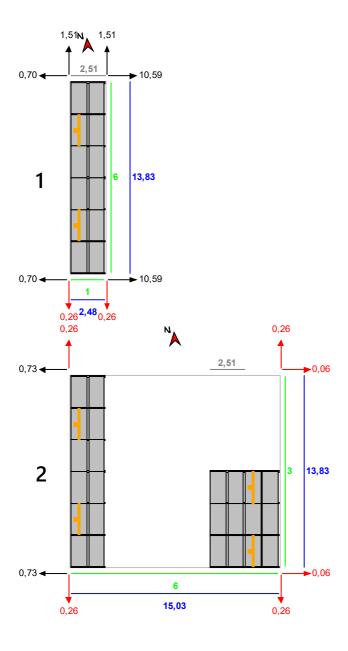
Dimensões CxLxA 2274 x 1134 x 35,00 mm

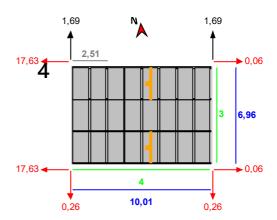
Peso 28,9 kg Potência 545 W

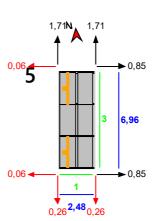
Medidas em [m]

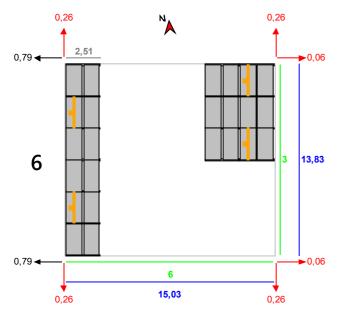
LEGENDA

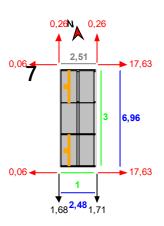

Distância até o campo de módulos mais próximo [m]

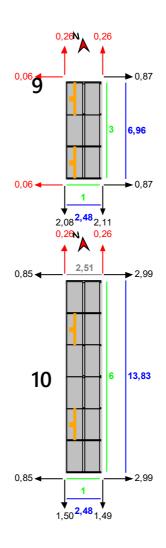

Distância até a margem do telhado [m]

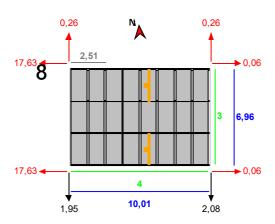

Quantidade de módulos

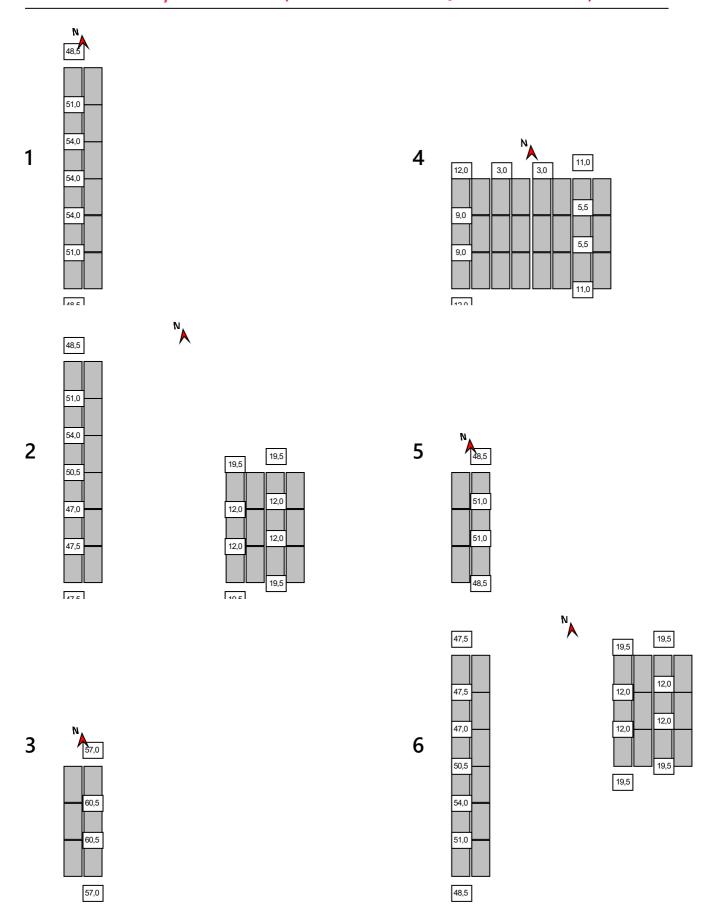

Comprimento/largura do campo de módulos [m]

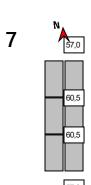

Distância das fileiras [m]

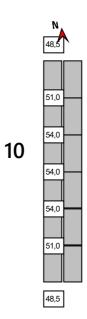


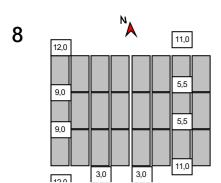


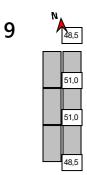











PLANO DE APLICAÇÃO DE LASTRO (TELHADO 4 - ALA ESQUERDA E CENTRAL)

RESULTADOS (TELHADO 4 - ALA ESQUERDA E CENTRAL)

VALORES DE RESISTÊNCIA DAS ÂNCORAS

User defined anchor Escora

Capacidade de 2,43 kN

cisalhamento

Capacidade de carga de

tracção

1,63 kN

VERIFICAÇÃO DAS CARGAS DO SISTEMA

Verificação das cargas do sistema [%]	Pressão	40,88
	Sucção	92,45
Cargas sobre os módulos (Análise de	Pressão	1229
segurança estrutural) [Pa]	Sucção	-974
Cargas sobre os módulos (Verificação de	Pressão	830
solicitações) [Pa]	Sucção	-613

CARGAS ESPECÍFICAS

Índice (Bloco de	Número de suportes (Bloco de módulos)	 (B	Lastro [kg] loco de módul		o∯arga permanente [kN/m²] (Bloco de módulos)	[kN/m²]	:ePróprio peso [kN/m²]
campo de módulos 1	6	 	361,0	748,6	0,23		
campo de módulos 2	12	 	472,0	1247,2	0,19		
campo de módulos 3	3	 	235,0	428,8	0,26		
campo de módulos 4	12	 	81,0	856,2	0,12		
campo de módulos 5	3	 	199,0	392,8	0,24		
campo de módulos 6	12	 	472,0	1247,2	0,19		
campo de módulos 7	3	 	235,0	428,8	0,26		
campo de módulos 8	12	 	81,0	856,2	0,12		
campo de módulos 9	3	 	199,0	392,8	0,24		
campo de módulos 10	6	 	361,0	748,6	0,23		
Todos os blocos	72	 	2696,0	7347,2		0,06	

NOTAS

- A prova da segurança da posição e da capacidade de carga do sistema é realizada verificando os casos de carga que são levantados e deslocados pelo vento e por cálculos estáticos adicionais. Você encontrará uma versão curta do relatório do túnel de vento e um certificado para os cálculos estáticos adicionais em nossa página inicial.
- Em relação às condições do local, os dados e os resultados têm de ser verificados por uma pessoa adequadamente qualificada. Por favor, considere https://k2-systems.com/pt/base-cqu em particular o parágrafo 2 ("Condições técnicas e gerais no cliente"), o parágrafo 7 ("Limitação da garantia") e o parágrafo 8 ("Limitação de responsabilidade"), que podem ser consultados nas nossas Condições gerais de utilização.

O cálculo do Terragrif serve como orientação e deve ser considerado especificamente para o projeto

As âncoras não fazem parte dos produtos K2 e devem ser adquiridas separadamente do respectivo

Há uma sobreposição de conflito com um obstáculo ou deslocamento de obstáculo.

RELATÓRIO DE ANÁLISE ESTRUTURAL (TELHADO 4 - ALA ESQUERDA E CENTRAL)

INFORMAÇÕES GERAIS

Ampliação UFV - CMPA - cópia 2 Nome

Sistema de montagem D-Dome 6.10 Xpress com balastro e âncoras fixas

Cliente Câmara de Vereadores

de Porto Alegre - RS

Contato Hélio Maltz

Raniere Steckert Operador

Marcello

LOCAL

Porto Alegre, RS, Brazil Endereço

Altitude 10,40 m

Tipo de telhado Telhado plano

Método de fixação com balastro e âncoras fixas

Cobertura Plano Altura da edificação 8,00 m Altura do parapeito 0,15 m 0° Inclinação do telhado Distância mínima da borda 0,60 m Material Betume 1.00

Coeficiente de atrito

CARGAS

Metodologia de design **ABNT**

 $q_p = 0.697 \text{ kN/m}^2$ Pressão de rajada

CARGA PERMANENTE

 $= 11,21 \text{ kg/m}^2$ $G_{M} = 28,9 \text{ kg}$ Peso dos módulos Peso próprio do

módulo

= 3,4 kg $= 0.66 \text{ kg/m}^2$ Peso do sistema de Peso próprio do

montagem sistema de montagem

 $A_{M} = 2,58 \text{ m}^{2}$ $= 0.12 \text{ kN/m}^2$ Área do módulo Carga própria total

(excluindo lastro)

COMBINAÇÃO DE AÇÕES

CAPACIDADE DE CARGA

Coeficiente de ponderação para as ações $$\gamma_{\text{G,sup}}$$ 1,40

permanentes de efeito desfavorável

Coeficiente de ponderação para as ações $\gamma_{G,inf}$ 1,00

permanentes de efeito favorável

Coeficiente de ponderação para a ação variável γ_Q 1,40

principal

Combinação de caso de carga 00:

Combinação de caso de carga 02:

Combinação de caso de carga 03:

Combinação de caso de carga 04:

Combinação de caso de carga 05:

Combinação de caso de carga 06:

Combinação de caso de carga 07:

Combinação de caso de carga 08:

Combinação de caso de carga 09:

Verificação de elevação:

Verificação de deslocamento:

COMBINAÇÃO DE AÇÕES

Combinação de caso de carga 00:

Combinação de caso de carga 01: $E_d = G_k * W_{k, Pressão}$

Combinação de caso de carga 02: $E_d = G_k * W_{k,Sucção}$

O SISTEMA FOI VERIFICADO COM SUCESSO.

PRESSÃO MÁXIMA NO ISOLAMENTO

INFORMAÇÕES GERAIS

Diagrama de cargas permanentes $g_{Sistema} = 0,12 \text{ kN/m}^2$

coeficiente aerodinâmico $c_{p,Press\~ao} = 0,2$

DISTRIBUIÇÃO DE CARGA NO TAPETE DE PROTEÇÃO DO EDIFÍCIO ABAIXO DE 0,45 °

Dimensões 75,3 * 380,0 * 23,1 mm

 $A_{\text{eff}} = 28614 \text{ mm}^2$

 $A_{Extens\~ao\ das\ cargas} = 2,58\ m^2$

máx. lastro $G_{Lastro} = 39,9 \text{ kg}$

DISTRIBUIÇÃO DE CARGA NO TAPETE DE PROTEÇÃO SOB O SISTEMA SD, 45°

Dimensões 75,3 * 380,0 * 23,1 mm

 $A_{eff} = 28614 \text{ mm}^2$

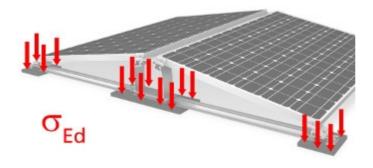
 $A_{Extensão das cargas} = 1,29 \text{ m}^2$

máx. lastro $G_{Lastro} = 10,3 \text{ kg}$

COMBINAÇÃO DE AÇÕES

área	,		Combinação de caso de carga 0 2	Combinação de caso de carga 0 3	Combinação de caso de carga 0 4	,
σεκ,Isolamento térmico,D6_10 [Pa]		37321				
σ _{Ek,Isolamento térmico,SD} [Pa]		15343				

EFEITOS DE CARGAS MORTAS (SISTEMA FOTOVOLTAICO + LASTRO)


 $\sigma_{Ek,Isolamento\ térmico,D6_10}$ $\sigma_{Ek} = --- Pa$

 $\sigma_{Ek,Isolamento\ térmico,SD}$ $\sigma_{Ek} = --- Pa$

AÇÕES MÁXIMAS (SOMA DAS CARGAS MORTAS E AS AÇÕES VARIÁVEIS MÁXIMAS DE VENTO E NEVE)

 $\sigma_{Ek,Isolamento\ térmico,D6_10}$ max $\sigma_{Ek}=37321\ Pa$

 $\sigma_{Ek,Isolamento\ t\acute{e}rmico,SD}$ max $\sigma_{Ek}=15343\ Pa$

CARGAS DE VENTO PROVENIENTE DOS PAINÉIS FOTOVOTLAICOS PARA A ESTRUTURA

De acordo com os testes de túnel de vento realizados por I.F.I. Institut für Industrieaerodynamik G mbH

INFORMAÇÕES GERAIS

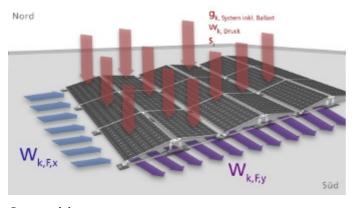
Número de módulos na área central72Número dos módulos na área da margem72Número total de módulos144

Áreas de telhado cobertas com módulos $A = aprox. 414,21 \text{ m}^2$

Carga permanente $g_{k,Sistema\ incl.\ lastro} = 0,17\ kN/m^2$

COEFICIENTES AERODINÂMICOS

 $\begin{array}{lll} C_{p,\,Pressão} & segundo \, EN \, 04\text{-}01\text{-}1991 \\ C_{F,x,em \, média} & -0,07 \\ \\ C_{F,y,em \, média} & 0,01 \\ Correção \, da \, distância \, da \, margem & k_{Slxy} = 1 \\ Coeficiente \, de \, correção \, do \, parapeito & k_p = 1,03 \\ \end{array}$


TENSÃO HORIZONTAL

 $W_{k,F,x} = 0.013 \text{ kN/m}^2$ $W_{k,F,y} = 0.007 \text{ kN/m}^2$

TENSÃO VERTICAL

 $g_{k,Sistema\ incl.\ lastro} = 0,17\ kN/m^2$ $W_{k,Pressão}$ - segundo EN 04-01-1991

s_i - segundo EN 1991-1-3

Comentários:

As cargas de vento em telhados planos são determinadas pelo seu efeito de deslocamento, e permanecem inalteradas mesmo considerando uma estrutura de painéis plana. Recomendamos a utilização dos coeficientes aerodinâmicos de acordo com a norma DIN EN 1991-1-4 para o cálculo de telhados planos.

LISTA DE MATERIAIS (TELHADO 4 - ALA ESQUERDA E CENTRAL)

Posição	Nº do artigo	Artigo	Quantidade	Peso
1	2004095	D-Dome 6.10 Base Set L	92	278,2 kg
2	2004125	Dome 6.10 Peak	184	55,2 kg
3	2004123	Dome 6.10 Connector Bonding Set	32	6,9 kg
4	2002649	TerraGrif K2MI Duo	144	0,1 kg
5	2002870	K2 Solar Cable Manager	144	0,4 kg
6	xxxxxxx	User defined anchor	24	-
7	2004144	FixPro L	24	96,0 kg
8	2002547	Adapter Plate M12	24	7,2 kg
9	2003147	Climber 36/50 M12	24	1,5 kg
10	2002558	MiniClamp MC Set 30-50	208	12,1 kg
11	2002559	MiniClamp EC Set 30-50	160	10,6 kg
Total				468.2 kg

As âncoras não fazem parte dos produtos K2 e devem ser adquiridas separadamente do respectivo fabricante.

DADOS DO PROJETO (TELHADO 3 - ALA NORTE)

INFORMAÇÕES GERAIS

Nome Ampliação UFV - CMPA - cópia 2

Sistema de montagem D-Dome 6.10 Xpress com balastro e âncoras fixas

Cliente Câmara de Vereadores

de Porto Alegre - RS

Contato Hélio Maltz

Operador Raniere Steckert

Marcello

LOCAL

Endereço Porto Alegre, RS, Brazil

Altitude 10,40 m

Tipo de telhado Telhado plano

com balastro e âncoras fixas Método de fixação

Cobertura Plano Altura da edificação 8,00 m Altura do parapeito 0.15 m Inclinação do telhado 0° Distância mínima da borda 0,60 m

Material Betume Coeficiente de atrito 1.00

O coeficiente de atrito indicado aqui deve ser verificado no local. Caso seja auferido um valor menor, este deverá ser indicado para o cálculo de lastro.

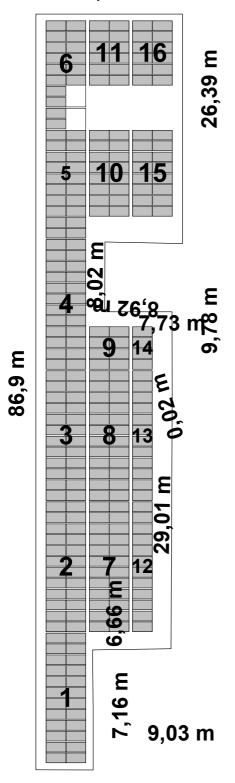
CARGAS

Metodologia de design **ABNT**

MÓDULOS

Fabricante JinkoSolar Holding Co. Quantidade 272

Ltd.


Nome JKM-545M-72HL4-V Potência 148,240 kWp

Tiger Pro 72HC

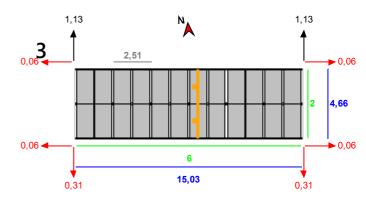
Dimensões CxLxA 2274 x 1134 x 35,00 mm

Peso 28,9 kg Potência 545 W

16,85 m

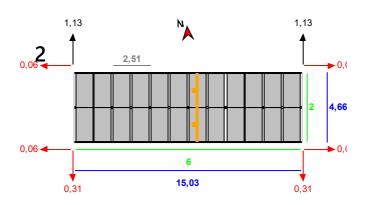
Me**Uda6@f9**n]

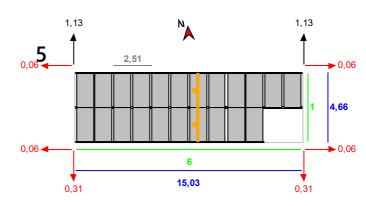
LEGENDA

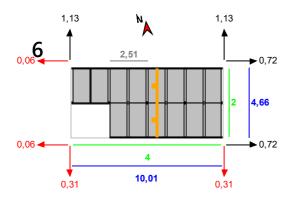

Distância até o campo de módulos mais próximo [m]

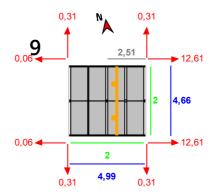
Distância até a margem do telhado [m]

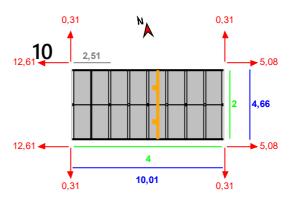
Quantidade de módulos

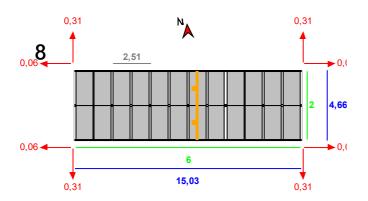

Comprimento/largura do campo de módulos [m]

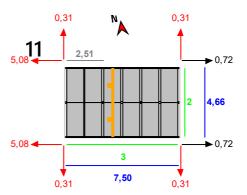

Distância das fileiras [m]

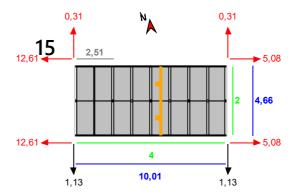


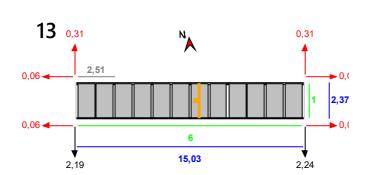


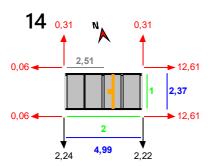


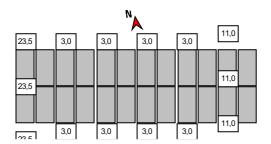


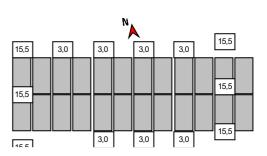




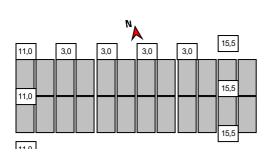


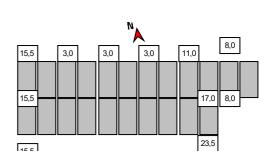


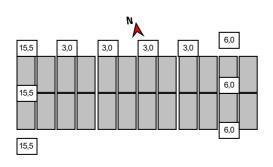


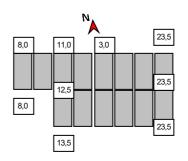


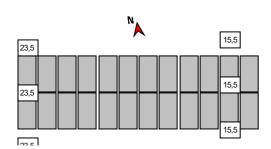
PLANO DE APLICAÇÃO DE LASTRO (TELHADO 3 - ALA NORTE)

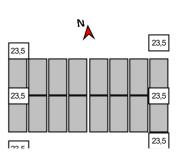

1

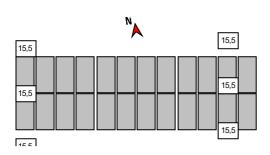

4

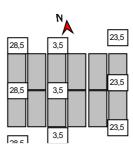

2

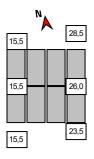

5

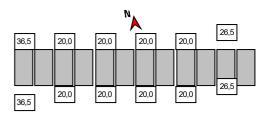


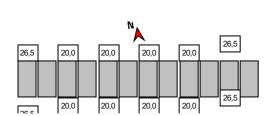

3

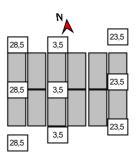


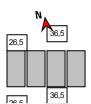

6

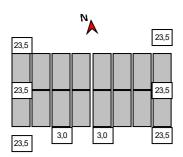









13


16

14

15

RESULTADOS (TELHADO 3 - ALA NORTE)

VALORES DE RESISTÊNCIA DAS ÂNCORAS

Escora User defined anchor

Capacidade de 2,43 kN

cisalhamento

Capacidade de carga de 1,63 kN

tracção

VERIFICAÇÃO DAS CARGAS DO SISTEMA

Verificação das cargas do sistema [%]	Pressão	24,66
	Sucção	92,60
Cargas sobre os módulos (Análise de	Pressão	1229
segurança estrutural) [Pa]	Sucção	-974
Cargas sobre os módulos (Verificação de	Pressão	830
solicitações) [Pa]	Sucção	-613

CARGAS ESPECÍFICAS

Índice (Bloco de	Número de suportes (Bloco de módulos)	 (B	Lastro [kg] oco de módul		o∯arga permanente [kN/m²] (Bloco de módulos)	Carga permanen [kN/m²] (Superfície do telhado)	:ePróprio peso [kN/m²]
campo de módulos 1	12	 	127,5	902,7	0,13		
campo de módulos 2	12	 	91,5	866,7	0,12		
campo de módulos 3	12	 	76,5	851,7	0,12		
campo de módulos 4	12	 	114,0	889,2	0,13		
campo de módulos 5	11	 	123,0	833,6	0,13		
campo de módulos 6	7	 	126,5	578,7	0,14		
campo de módulos 7	12	 	117,0	892,2	0,13		
campo de módulos 8	12	 	93,0	868,2	0,12		
campo de módulos 9	4	 	124,5	382,9	0,17		
campo de módulos 10	8	 	141,0	657,8	0,14		
campo de módulos 11	6	 	166,5	554,1	0,16		
campo de módulos 12	6	 	286,0	673,6	0,19		
campo de módulos 13	6	 	266,0	653,6	0,19		
campo de módulos 14	2	 	126,0	255,2	0,22		
campo de módulos 15	8	 	147,0	663,8	0,14		
campo de módulos 16	6	 	166,5	554,1	0,16		
Todos os blocos	136	 	2292,5	11078,1		0,09	

NOTAS

- A prova da segurança da posição e da capacidade de carga do sistema é realizada verificando os casos de carga que são levantados e deslocados pelo vento e por cálculos estáticos adicionais. Você encontrará uma versão curta do relatório do túnel de vento e um certificado para os cálculos estáticos adicionais em nossa página inicial.
- Em relação às condições do local, os dados e os resultados têm de ser verificados por uma pessoa adequadamente qualificada. Por favor, considere https://k2-systems.com/pt/base-cgu em particular o parágrafo 2 ("Condições técnicas e gerais no cliente"), o parágrafo 7 ("Limitação da garantia") e o parágrafo 8 ("Limitação de responsabilidade"), que podem ser consultados nas nossas Condições gerais de utilização.

O cálculo do Terragrif serve como orientação e deve ser considerado especificamente para o projeto

As âncoras não fazem parte dos produtos K2 e devem ser adquiridas separadamente do respectivo fabricante.

RELATÓRIO DE ANÁLISE ESTRUTURAL (TELHADO 3 - ALA NORTE)

INFORMAÇÕES GERAIS

Nome Ampliação UFV - CMPA - cópia 2

Sistema de montagem D-Dome 6.10 Xpress com balastro e âncoras fixas

Cliente Câmara de Vereadores

de Porto Alegre - RS

Contato Hélio Maltz

Operador Raniere Steckert

Marcello

LOCAL

Endereço Porto Alegre, RS, Brazil

Altitude 10,40 m

Tipo de telhado Telhado plano

Método de fixação com balastro e âncoras fixas

Cobertura Plano
Altura da edificação 8,00 m
Altura do parapeito 0,15 m
Inclinação do telhado 0 °
Distância mínima da borda 0,60 m
Material Betume
Coeficiente de atrito 1.00

CARGAS

Metodologia de design ABNT

Pressão de rajada $q_n = 0.697 \text{ kN/m}^2$

CARGA PERMANENTE

Peso dos módulos $G_M = 28,9 \text{ kg}$ Peso próprio do $= 11,21 \text{ kg/m}^2$

módulo

Peso do sistema de = 3.4 kg Peso próprio do $= 0.66 \text{ kg/m}^2$

montagem sistema de montagem

Área do módulo $A_{M} = 2,58 \text{ m}^2$ Carga própria total $= 0,12 \text{ kN/m}^2$

(excluindo lastro)

COMBINAÇÃO DE AÇÕES

CAPACIDADE DE CARGA

Coeficiente de ponderação para as ações $$\gamma_{\text{G,sup}}$$ 1,40

permanentes de efeito desfavorável

Coeficiente de ponderação para as ações $\gamma_{G,inf}$ 1,00

permanentes de efeito favorável

Coeficiente de ponderação para a ação variável γ_Q 1,40

principal

Combinação de caso de carga 00:

Combinação de caso de carga 02:

Combinação de caso de carga 03:

Combinação de caso de carga 04:

Combinação de caso de carga 05:

Combinação de caso de carga 06:

Combinação de caso de carga 07:

Combinação de caso de carga 08:

Combinação de caso de carga 09:

Verificação de elevação:

Verificação de deslocamento:

COMBINAÇÃO DE AÇÕES

Combinação de caso de carga 00:

Combinação de caso de carga 01: $E_d = G_k * W_{k, Pressão}$

Combinação de caso de carga 02: $E_d = G_k * W_{k,Sucção}$

O SISTEMA FOI VERIFICADO COM SUCESSO.

PRESSÃO MÁXIMA NO ISOLAMENTO

INFORMAÇÕES GERAIS

Diagrama de cargas permanentes $g_{Sistema} = 0.12 \text{ kN/m}^2$

coeficiente aerodinâmico $c_{p,Press\~ao} = 0,2$

DISTRIBUIÇÃO DE CARGA NO TAPETE DE PROTEÇÃO DO EDIFÍCIO ABAIXO DE 0,45 °

Dimensões 75,3 * 380,0 * 23,1 mm

 $A_{\text{eff}} = 28614 \text{ mm}^2$

 $A_{Extens\~ao\ das\ cargas} = 2,58\ m^2$

máx. lastro $G_{Lastro} = 24,1 \text{ kg}$

DISTRIBUIÇÃO DE CARGA NO TAPETE DE PROTEÇÃO SOB O SISTEMA SD, 45°

Dimensões 75,3 * 380,0 * 23,1 mm

 $A_{eff} = 28614 \text{ mm}^2$

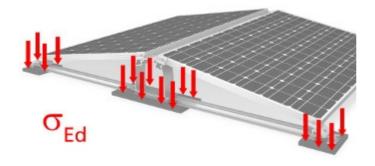
 $A_{Extensão das cargas} = 1,29 \text{ m}^2$

máx. lastro $G_{Lastro} = 6.2 \text{ kg}$

COMBINAÇÃO DE AÇÕES

área		Combinação de caso de carga 0 3	Combinação de caso de carga 0 4	
σEk,Isolamento térmico,D6_10 [Pa]	 31893	 		
σ _{Ek.Isolamento térmico,SD} [Pa]	 13945	 		

EFEITOS DE CARGAS MORTAS (SISTEMA FOTOVOLTAICO + LASTRO)


 $\sigma_{Ek,Isolamento\ térmico,D6_10}$ $\sigma_{Ek} = --- Pa$

 $\sigma_{Ek,Isolamento\ térmico,SD}$ $\sigma_{Ek} = --- Pa$

AÇÕES MÁXIMAS (SOMA DAS CARGAS MORTAS E AS AÇÕES VARIÁVEIS MÁXIMAS DE VENTO E NEVE)

 $\sigma_{Ek,Isolamento\ térmico,D6_10}$ max $\sigma_{Ek}=31893\ Pa$

 $\sigma_{Ek,Isolamento\ t\acute{e}rmico,SD}$ max $\sigma_{Ek}=13945\ Pa$

CARGAS DE VENTO PROVENIENTE DOS PAINÉIS FOTOVOTLAICOS PARA A ESTRUTURA

 $k_p =$

De acordo com os testes de túnel de vento realizados por I.F.I. Institut für Industrieaerodynamik G mbH

INFORMAÇÕES GERAIS

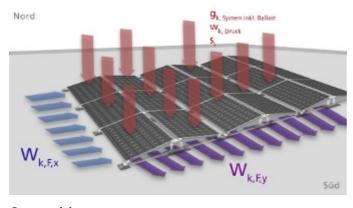
Número de módulos na área central 0 Número dos módulos na área da margem 272 Número total de módulos 272

Áreas de telhado cobertas com módulos $A = aprox. 782,40 \text{ m}^2$

 $g_{k,Sistema\ incl.\ lastro} = 0.14\ kN/m^2$ Carga permanente

COEFICIENTES AERODINÂMICOS

segundo EN 04-01-1991 C_{p. Pressão} -0,06 C_{F,x,em média} 0,01 C_{F,y,em média} Correção da distância da margem $k_{Slxy} =$ Coeficiente de correção do parapeito 1,02


TENSÃO HORIZONTAL

 $W_{k,F,x} = 0.014 \text{ kN/m}^2$ $W_{k,F,y} = 0,006 \text{ kN/m}^2$

TENSÃO VERTICAL

 $g_{k,Sistema\ incl.\ lastro} = 0,14\ kN/m^2$ W_{k.Pressão} - segundo EN 04-01-1991

s_i - segundo EN 1991-1-3

Comentários:

As cargas de vento em telhados planos são determinadas pelo seu efeito de deslocamento, e permanecem inalteradas mesmo considerando uma estrutura de painéis plana. Recomendamos a utilização dos coeficientes aerodinâmicos de acordo com a norma DIN EN 1991-1-4 para o cálculo de telhados planos.

LISTA DE MATERIAIS (TELHADO 3 - ALA NORTE)

Posição	Nº do artigo	Artigo	Quantidade	Peso
1	2004095	D-Dome 6.10 Base Set L	212	641,1 kg
2	2004125	Dome 6.10 Peak	424	127,2 kg
3	2004123	Dome 6.10 Connector Bonding Set	167	36,1 kg
4	2002649	TerraGrif K2MI Duo	272	0,3 kg
5	2002870	K2 Solar Cable Manager	272	0,8 kg
6	XXXXXXX	User defined anchor	29	-
7	2004144	FixPro L	29	116,0 kg
8	2002547	Adapter Plate M12	29	8,7 kg
9	2003147	Climber 36/50 M12	29	1,9 kg
10	2002558	MiniClamp MC Set 30-50	240	13,9 kg
11	2002559	MiniClamp EC Set 30-50	608	40,1 kg
Total				986,1 kg

As âncoras não fazem parte dos produtos K2 e devem ser adquiridas separadamente do respectivo fabricante.

LISTA COMPLETA DE MATERIAIS (TODOS TELHADOS)

Posição	Nº do artigo	Artigo	Quantidade	Peso
1	2003024	Single Standing SeamClamp CF:x	1080	156,6 kg
2	1003586	MiddleClamp XS Set 34-38	312	21,8 kg
3	1005169	EndClamp Set 34-36	240	18,0 kg
4	2002870	K2 Solar Cable Manager	904	2,5 kg
5	2003222	SingleRail 36; 4.40 m	132	447,5 kg
6	2001976	SingleRail 36 RailConnector Set	96	36,1 kg
7	2004095	D-Dome 6.10 Base Set L	516	1560,4 kg
8	2004125	Dome 6.10 Peak	1032	309,6 kg
9	2004123	Dome 6.10 Connector Bonding Set	359	77,5 kg
10	XXXXXXX	User defined anchor	86	-
11	2004144	FixPro L	86	344,0 kg
12	2002547	Adapter Plate M12	86	25,8 kg
13	2003147	Climber 36/50 M12	86	5,5 kg
14	2002558	MiniClamp MC Set 30-50	688	39,9 kg
15	2002559	MiniClamp EC Set 30-50	1376	90,8 kg
16	2002649	TerraGrif K2MI Duo	416	0,4 kg
Total				3136,4 kg

As âncoras não fazem parte dos produtos K2 e devem ser adquiridas separadamente do respectivo fabricante.